PREPRINT
DD1BF8E3-CF80-4788-B96D-9DEE53612A30
Euclid preparation: XXIII. Derivation of galaxy physical properties with
deep machine learning using mock fluxes and H-band images
Euclid Collaboration, L. Bisigello, C. J. Conselice, M. Baes, M. Bolzonella, M. Brescia, S. Cavuoti, O. Cucciati, A. Humphrey, L. K. Hunt, C. Maraston11, L. Pozzetti, C. Tortora, S. E. van Mierlo, N. Aghanim, N. Auricchio, M. Baldi, R. Bender, C. Bodendorf, D. Bonino, E. Branchini, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, F. J. Castander, M. Castellano, A. Cimatti, G. Congedo, L. Conversi, Y. Copin, L. Corcione, F. Courbin, M. Cropper, A. Da Silva, H. Degaudenzi, M. Douspis, F. Dubath, C. A. J. Duncan, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, P. Franzetti, M. Fumana, B. Garilli, W. Gillard, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, L. Guzzo, S. V. H. Haugan, W. Holmes, F. Hormuth, A. Hornstrup, K. Jahnke, M. Kümmel, S. Kermiche, A. Kiessling, M. Kilbinger, R. Kohley, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, F. Marulli, R. Massey, S. Maurogordato, E. Medinaceli, M. Meneghetti, E. Merlin, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S. M. Niemi, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, G. Polenta, M. Poncet, L. Popa, F. Raison, A. Renzi, J. Rhodes, G. Riccio, H. -W. Rix, E. Romelli, M. Roncarelli, C. Rosset, E. Rossetti, R. Saglia, D. Sapone, B. Sartoris, P. Schneider, M. Scodeggio, A. Secroun, G. Seidel, C. Sirignano, G. Sirri, L. Stanco, P. Tallada-Crespí, D. Tavagnacco, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, E. A. Valentijn, L. Valenziano, T. Vassallo, Y. Wang, A. Zacchei, G. Zamorani, J. Zoubian, S. Andreon, S. Bardelli A. Boucaud, C. Colodro-Conde, D. Di Ferdinando, J. Graciá-Carpio, V. Lindholm, D. Maino, S. Mei, V. Scottez, F. Sureau, M. Tenti, E. Zucca, A. S. Borlaff, M. Ballardini, A. Biviano, E. Bozzo, C. Burigana, R. Cabanac, A. Cappi, C. S. Carvalho, S. Casas, G. Castignani, A. Cooray, J. Coupon, H. M. Courtois, J. Cuby, S. Davini, G. De Lucia, G. Desprez, H. Dole, J. A. Escartin, S. Escoffier, M. Farina, S. Fotopoulou, K. Ganga, J. Garcia-Bellido, K. George, F. Giacomini, G. Gozaliasl, H. Hildebrandt, I. Hook, M. Huertas-Company, V. Kansal, E. Keihanen, C. C. Kirkpatrick, A. Loureiro, J. F. Macías-Pérez, M. Magliocchetti, G. Mainetti, S. Marcin, M. Martinelli, N. Martinet, R. B. Metcalf, P. Monaco, G. Morgante, S. Nadathur, A. A. Nucita, L. Patrizii, A. Peel, D. Potter, A. Pourtsidou, M. Pöntinen, P. Reimberg, A. G. Sánchez, Z. Sakr, M. Schirmer, E. Sefusatti, M. Sereno, J. Stadel, R. Teyssier, C. Valieri, J. Valiviita111, M. Viel
Abstract
Next generation telescopes, such as Euclid, Rubin/LSST, and Roman, will open
new windows on the Universe, allowing us to infer physical properties for tens
of millions of galaxies. Machine learning methods are increasingly becoming the
most efficient tools to handle this enormous amount of data, not only as they
are faster to apply to data samples than traditional methods, but because they
are also often more accurate. Properly understanding their applications and
limitations for the exploitation of these data is of utmost importance. In this
paper we present an exploration of this topic by investigating how well
redshifts, stellar masses, and star-formation rates can be measured with deep
learning algorithms for galaxies within data that mimics the Euclid and
Rubin/LSST surveys. We find that Deep Learning Neural Networks and
Convolutional Neutral Networks (CNN), which are dependent on the parameter
space of the sample used for training, perform well in measuring the properties
of these galaxies and have an accuracy which is better than traditional methods
based on spectral energy distribution fitting. CNNs allow the processing of
multi-band magnitudes together with -band images. We find that the
estimates of stellar masses improve with the use of an image, but those of
redshift and star-formation rates do not. Our best machine learning results are
deriving i) the redshift within a normalised error of less than 0.15 for 99.9%
of the galaxies in the sample with S/N>3 in the -band; ii) the stellar
mass within a factor of two (0.3 dex) for 99.5% of the considered
galaxies; iii) the star-formation rates within a factor of two (0.3 dex)
for 70% of the sample. We discuss the implications of our work for
application to surveys, mainly but not limited to Euclid and Rubin/LSST, and
how measurements of these galaxy parameters can be improved with deep learning.