D(18F,pa)15N reaction applied to nova gamma-ray emission

N. de Sereville, A. Coc, C. Angulo, M. Assuncao, D. Beaumel, B. Bouzid, S. Cherubini, M. Couder, P. Demaret, F. de Oliveira Santos, P. Figuera, S. Fortier, M. Gaelens, F. Hammache, J. Kiener, D. Labar, A. Lefebvre, P. Leleux, M. Loiselet, A. Ninane, S. Ouichaoui, G. Ryckewaert, N. Smirnova, V. Tatischeff, J. -P. Thibaud

Submitted on 15 April 2003


The 18F(p,alpha)15O reaction is recognized to be one of the most important reactions for nova gamma-ray astronomy as it governs the early E <= 511keV gamma emission. However in the nova temperature regime, its rate remains largely uncertain due to unknown low-energy resonance strengths. We report here the measurement of the D(18F,p)19F(alpha)15N one-nucleon transfer reaction, induced by a 14 MeV 18F radioactive beam impinging on a CD2 target; outgoing protons and 15N (or alpha-particles) were detected in coincidence in two silicon strip detectors. A DWBA analysis of the data resulted in new limits to the contribution of low-energy resonances to the rate of the 18F(p,alpha)15O reaction.


Comment: Rapid Communication to appear in Phys. Rev. C., 4 pages and 4 figures

Subjects: Nuclear Experiment; Astrophysics