PREPRINT

One-Dimensional Numerical Study on Ignition of the Helium Envelope in Dynamical Accretion during the Double-Degenerate Merger

Kazuya Iwata and Keiichi Maeda

Submitted on 7 November 2022

Abstract

In order for a double-detonation model to be viable for normal type Ia supernovae, the adverse impact of helium-burning ash on early-time observables has to be avoided, which requires that the helium envelope mass should be at most 0.02 solar mass. Most of the previous studies introduced detonation by artificial hot spots, and therefore the robustness of the spontaneous helium detonation remains uncertain. In the present work, we conduct a self-consistent hydrodynamic study on the spontaneous ignition of the helium envelope in the context of the double-degenerate channel, by applying an idealized one-dimensional model and a simplified 7 isotope reaction network. We explore a wide range of the progenitor conditions, and demonstrate that the chance of direct initiation of detonation is limited. Especially, the spontaneous detonation requires the primary envelope mass of >~ 0.03 solar mass. Ignition as deflagration is instead far more likely, which is feasible for the lower envelope mass down to ~ 0.01 solar mass, which might lead to subsequent detonation once the deflagration to detonation transition (DDT) would be realized. High-resolution multi-dimensional simulations are required to further investigate the DDT possibility, as well as accurately derive the threshold between the spontaneous detonation and deflagration ignition regimes. Another interesting finding is the effect of the composition; while mixing with the core material enhances detonation as previously suggested, it rather narrows the chance for deflagration due to the slower rate of 12C(alpha,gamma)16O reaction at the lower temperature ~108K, with the caveat that we presently neglect the proton-catalyzed reaction sequence of 12C(p,gamma)13O(alpha,p)16O.

Preprint

Comment: accepted for publication in ApJ

Subjects: Astrophysics - High Energy Astrophysical Phenomena; Astrophysics - Solar and Stellar Astrophysics

URL: http://arxiv.org/abs/2211.03328