Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra

Navdeep K. Panesar, Sanjiv K. Tiwari, Ronald L. Moore, Alphonse C. Sterling, Bart De Pontieu

Submitted on 31 August 2022


We present the first IRIS Mg II slit-raster spectra that fully capture the genesis and coronal-jet-generating eruption of a central-disk solar minifilament. The minifilament arose in a negative-magnetic-polarity coronal hole. The Mg II spectroheliograms verify that the minifilament plasma temperature is chromospheric. The Mg II spectra show that the erupting minifilament's plasma has blueshifted upflow in the jet spire's onset and simultaneous redshifted downflow at the location of the compact jet bright point (JBP). From the Mg II spectra together with AIA EUV images and HMI magnetograms, we find: (i) the minifilament forms above a flux cancelation neutral line at an edge of a negative-polarity network flux clump; (ii) during the minifilament's fast-eruption onset and jet-spire onset, the JBP begins brightening over the flux-cancelation neutral line. From IRIS2 inversion of the Mg II spectra, the JBP's Mg II bright plasma has electron density, temperature, and downward (red-shift) Doppler speed of 1012 cm^-3, 6000 K, and 10 kms, respectively, and the growing spire shows clockwise spin. We speculate: (i) during the slow rise of the erupting minifilament-carrying twisted flux rope, the top of the erupting flux-rope loop, by writhing, makes its field direction opposite that of encountered ambient far-reaching field; (ii) the erupting kink then can reconnect with the far-reaching field to make the spire and reconnect internally to make the JBP. We conclude that this coronal jet is normal in that magnetic flux cancelation builds a minifilament-carrying twisted flux rope and triggers the JBP-generating and jet-spire-generating eruption of the flux rope.


Comment: 16 pages, 9 figures, 1 table, accepted for publication in ApJ

Subject: Astrophysics - Solar and Stellar Astrophysics