PREPRINT
1B65EA96-721E-4D61-8D9A-0991A3EF18EF

Large-scale cryovolcanic resurfacing on Pluto

Kelsi N. Singer, Oliver L. White, Bernard Schmitt, Erika L. Rader, Silvia Protopapa, William M. Grundy, Dale P. Cruikshank, Tanguy Bertrand, Paul M. Schenk, William B. McKinnon, S. Alan Stern, Rajani D. Dhingra, Kirby D. Runyon, Ross A. Beyer, Veronica J. Bray, Cristina Dalle Ore, John R. Spencer, Jeffrey M. Moore, Francis Nimmo, James T. Keane, Leslie A. Young, Catherine B. Olkin, Tod R. Lauer, Harold A. Weaver, Kimberly Ennico-Smith
arXiv:2207.06557

Submitted on 13 July 2022

Abstract

The New Horizons spacecraft returned images and compositional data showing that terrains on Pluto span a variety of ages, ranging from relatively ancient, heavily cratered areas to very young surfaces with few-to-no impact craters. One of the regions with very few impact craters is dominated by enormous rises with hummocky flanks. Similar features do not exist anywhere else in the imaged solar system. Here we analyze the geomorphology and composition of the features and conclude this region was resurfaced by cryovolcanic processes, of a type and scale so far unique to Pluto. Creation of this terrain requires multiple eruption sites and a large volume of material (>104 km^3) to form what we propose are multiple, several-km-high domes, some of which merge to form more complex planforms. The existence of these massive features suggests Pluto's interior structure and evolution allows for either enhanced retention of heat or more heat overall than was anticipated before New Horizons, which permitted mobilization of water-ice-rich materials late in Pluto's history.

Preprint

Comment: 22 pages, including both main paper and supplement as one pdf

Subject: Astrophysics - Earth and Planetary Astrophysics

URL: https://arxiv.org/abs/2207.06557