PREPRINT
1A3C79C2-3EEE-48E3-9085-59433D7D5CC8
Activation measurement of the 3He(alpha,gamma)7Be cross section at low
energy
D. Bemmerer, F. Confortola, H. Costantini, A. Formicola, Gy. Gyurky, R. Bonetti, C. Broggini, P. Corvisiero, Z. Elekes, Zs. Fulop, G. Gervino, A. Guglielmetti, C. Gustavino, G. Imbriani, M. Junker, M. Laubenstein, A. Lemut, B. Limata, V. Lozza, M. Marta, R. Menegazzo, P. Prati, V. Roca, C. Rolfs, C. Rossi Alvarez, E. Somorjai, O. Straniero, F. Strieder, F. Terrasi, H. P. Trautvetter
Abstract
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a
major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted
by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis
calculations. The present work reports on a new precision experiment using the
activation technique at energies directly relevant to big-bang nucleosynthesis.
Previously such low energies had been reached experimentally only by the
prompt-gamma technique and with inferior precision. Using a windowless gas
target, high beam intensity and low background gamma-counting facilities, the
3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV
center-of-mass energy with a total uncertainty of 4%. The sources of systematic
uncertainty are discussed in detail. The present data can be used in big-bang
nucleosynthesis calculations and to constrain the extrapolation of the
3He(alpha,gamma)7Be astrophysical S-factor to solar energies.