Finding twin smooth integers by solving Pell equations

Jan Buzek, Junaid Hasan, Jason Liu, Michael Naehrig, Anthony Vigil

Submitted on 8 November 2022


Any pair of consecutive B-smooth integers for a given smoothness bound B corresponds to a solution (x, y) of the equation x^2 - 2Dy^2 = 1 for a certain square-free, B-smooth integer D and a B-smooth integer y. This paper describes algorithms to find such twin B-smooth integers that lie in a given interval by using the structure of solutions of the above Pell equation. The problem of finding such twin smooth integers is motivated by the quest for suitable parameters to efficiently instantiate recent isogeny-based cryptosystems. While the Pell equation structure of twin B-smooth integers has previously been used to describe and compute the full set of such pairs for very small values of B, increasing B to allow for cryptographically sized solutions makes this approach utterly infeasible. We start by revisiting the Pell solution structure of the set of twin smooth integers. Instead of using it to enumerate all twin smooth pairs, we focus on identifying only those that lie in a given interval. This restriction allows us to describe algorithms that navigate the vast set of Pell solutions in a more targeted way. Experiments run with these algorithms have provided examples of twin B-smooth pairs that are larger and have smaller smoothness bound B than previously reported pairs. Unfortunately, those examples do not yet provide better parameters for cryptography, but we hope that our methods can be generalized or used as subroutines in future work to achieve that goal.


Subjects: Computer Science - Cryptography and Security; Mathematics - Number Theory